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Abstract: Adversarial examples (AEs) against deep neural networks (DNNs) raise wide concerns about the robustness of
DNNs. Existing detection mechanisms are often limited to a given attack algorithm. Therefore, it is highly desirable to develop a
robust detection approach that remains effective for a large group of attack algorithms. In addition, most of the existing defences
only perform well for small images (e.g. MNIST and Canadian institute for advanced research (CIFAR)) rather than large images
(e.g. ImageNet). In this paper, the authors propose a robust and effective defence method for analysing the sensitivity of various
AEs, especially in a much harder case (large images). Their method first creates a feature map from the input space to the new
feature space, by utilising 19 different feature mapping methods. Then, a detector is learned with the machine-learning algorithm
to recognise the unique distribution of AEs. Their extensive evaluations on their proposed detector show that their detector can
achieve: (i) low false-positive rate (<1%), (ii) high true-positive rate (higher than 98%), (iii) low overhead (<0.1 s per input), and
(iv) good robustness (work well across different learning models, attack algorithms, and parameters), which demonstrate the
efficacy of the proposed detector in practise.

1 Introduction
In recent years, deep neural networks (DNNs) have been widely
used in many crucial applications, such as auto-driving [1] and
traffic sign classification [2]. Although DNNs have exhibited
impressive performance on these tasks, it has been shown that they
are vulnerable to well-crafted adversarial examples (AEs) [3–7],
which are the inputs added with a small imperceptible perturbation
and are typically generated by using an optimisation procedure.
The existence of AEs hinders the application of DNNs. For
example, an attacker may use a fake adversarial image to fool the
face detection system, causing forgery of legitimate users, i.e. AEs
based attack raises security concerns about the application of
DNNs.

Current defences against AEs mainly follow two approaches: (i)
one gives a complete classification, where it tries to make DNNs
classify AEs correctly [8–15] and (ii) other conducts detection of
AEs without modifying the DNNs [16–20]. The first approach can
find known AEs well, but it usually needs to retrain the DNNs or
modify the architecture of the networks. For instance, adversarial
training [5, 21] and defensive distillation [9], which will need lots
of AEs from various attacks and introduce huge training cost. In
addition, the modified new DNNs usually remain vulnerable to
second AEs, namely the attacker can always find the adversarial
inputs through probing the decision boundary of the new network.
The second approach is independent of the original DNNs. Before
giving a prediction, the detection system will find suspicious inputs
and block out of them to avoid the misclassification of DNNs.
Since we target crucial security applications, such as face detection
and malware detection, we focus on the second method, where
detection before DNNs can resist the adversarial attacks from
malicious attackers.

Recent literature on detection-based defences can be further
divided into two categories. The first class is based on the
secondary classification, which leverages the difference between
AEs and normal examples to learn a classifier [16, 18]. The other
line of work is exploring inconsistencies between AEs and normal
examples in certain scenarios, such as statistical test [20], principal
component analysis (PCA) weights [15], and squeezing skills [17].
However, there are several major limitations to these existing

works. First, most existing methods were not comprehensively
evaluated. They were only evaluated on small images such as
modified national institute of standards and technology database
(MNIST) and CIFAR10 [16, 18, 19]. Since attacking large images
is easier than small images, on the other hand, the defences against
attacks on large images (e.g. ImageNet) become harder. This is also
confirmed by our experiments in Section 5. Second, most of
defences are lacking robustness [17, 18, 20]. A good detection-
based defence should work well across different attack algorithms
or target models. In other words, no matter how the attack
parameters, algorithms, and target model change, a robust defence
should be adaptive to them. Unfortunately, previous detection-
based defences are sensitive to the parameters and algorithms of
attacks, and they are model specific. For example, feature
squeezing [17] needs different thresholds for various AEs, and in
[18], one classifier trained on specific AEs cannot detect AEs from
other generation algorithms. Third, most of the existing detection
methods cannot defend well against white-box attacks, where the
adversary knows the detector and the target model. In [22–24], it
has been proven that all the above-discussed detection methods can
be bypassed easily. Hence, it is highly desirable to develop a robust
and effective detection method, which can work well across
different attack algorithms and target models. Even under white-
box attacks, the original DNNs with the proposed detection
strategy can still drastically reduce the attack success rate (ASR).

To address all of the issues above, in this work, we design an
effective detector based on the sensitivity of AEs, which works
well for more importantly large images. We first construct a new
feature space by utilising 19 space mapping methods. Then, by
extracting the labels and probability distributions of the
corresponding DNN predictions, we train a detector in the new
feature space. Our detector can learn the differences in the
distribution between AEs and normal examples in the new space.
Finally, we evaluate our detector against the state-of-the-art
attacks.

It should be noted that our detector is significantly different
from existing ensemble-based methods [17, 25]. Unlike the
existing works focusing on the decisions based on multiple
detectors, our method is to explore the sensitivity of AEs under
various mapping methods. Furthermore, the space mapping
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methods used in our detector are not limited to the squeezing skills
in [17]. In contrast, we consider both labels and probability
distributions of the prediction results. It has been shown
experimentally that our detector is indeed achieving better
detection on various AEs than feature squeezing [17].

In summary, this paper makes the following contributions:

• We systematically show that the evaluation of the existing
detection method against AEs is far from sufficient. Most of
them, which were evaluated on small images and performed
well previously, are shown to perform poorly on large images. In
addition, they cannot work well across different models and
attack algorithms.

• We propose a novel sensitivity-based detector to overcome the
weaknesses of existing detection approaches. By utilising 19
space mapping methods, the distribution of AEs can be
distinguished from that of normal examples in the new feature
space. Our detector makes a solid attempt to build a robust
detector across different learning models and attack algorithms.

• We conduct a comprehensive evaluation of the proposed
detector. The results show that the detector can achieve a high
true-positive rate (TPR) (98%), whereas a low false-positive rate
(FPR) (<1%), which significantly outperforms state-of-the-art
detection approaches. In addition, the detector is very efficient
(<0.1 s for detecting per input) and robust to adaptive attacks.
Our detector can also be used to defend against white-box
attacks. In particular, with our detector deployed, the success
rates of white-box attacks drop below 5%.

2 Background and related works
2.1 Adversarial attacks on neural networks

Given a network f, and a natural input x so that C[ f (x)] = l. When
we write C[ f (x)], we mean the classification of f on x. There are
two types of adversarial attacks. One is untargeted attack: we say
that x′ is an untargeted AE if C[ f (x′)] ≠ l and Δ(x, x′) ≤ ϵ, where
Δ(x, x′) quantifies the difference between x and x′ and ϵ is usually
a very small value. The other is targeted attack, which is usually
harder than the untargeted attack: given a target class t(t ≠ l), we
say that x′ is a targeted AE if C[ f (x′)] = t and Δ(x, x′) ≤ ϵ. To
measure the difference between x and x′, there are widely used
distance metrics in previous literatures. Among them, the most
popular one is as below:

∥ v ∥p = ∑
(i = 1)

n
vi

p 1/ p

(1)

where ∥ v ∥p means the Lp norm and Lp = ∥ x − x′ ∥p. Usually, L0,
L2 and L∞ norms are used to measure the quality of AEs. In brief,
the L0 norm can measure the number of modified pixels between x
and x′; L2 norm can measure the Euclidean distance between x and
x′; and L∞ norm can measure the maximum change among the
modified pixels between x and x′.

Next, we give a brief overview of several well known attacks,
which form the basis for our experiments. In the following section,
for simplicity, let AE and CE denote the adversarial and clean
(normal) examples, respectively.

Fast gradient sign method (FGSM): FGSM is a single-step attack
proposed in [5]. It is simple and uses the sign of the gradient of the
loss function to compute the perturbation. Let θ be the parameters
of the target model, x the input to the model, y the true label of x
and J(θ, x, y) be the cost function used in training f. Then, the AE
of FGSM is defined as

xadv = x + ϵ sign(∇xJ(θ, x, y)) (2)

where ϵ is a sufficiently small hyperparameter to be undetected.
Note that FGSM is designed to be fast instead of generating close
AE. On the basis of the FGSM attacks, momentum techniques can

also be generalised to a targeted class, which is called targeted
momentum iterative (MI)-FGSM [26].
Iterative gradient sign method (IGSM): Kurakin et al. [27]
proposed an iterative version of FGSM, namely IGSM. Instead of
taking a single step of size ϵ, multiple small sizes α are chosen, and
the value is clipped to ensure that it is in an ϵ-neighbourhood of the
original image

x0
adv = x, xi

adv = clipx, ϵ xi − 1
adv + α sign ∇xi − 1

adv J θ, xi − 1
adv, y (3)

In our experiments, we set α = 1 and the number of iterations to be
min (ϵ + 4, 1.25ϵ) as shown in [27]. Besides, we can also set target
classes during the iterations to launch targeted attacks, which are
also called target gradient sign method (TGSM) attacks.
DeepFool: Moosavi-Dezfooli et al. [6] proposed DeepFool, an
untargeted iterative attack, which approximates the classifier as a
linear decision boundary and finds very small perturbations to
cross the boundary. The perturbations caused by DeepFool are
smaller than FGSM, and they are still effective to deceive the target
models.
Carlini and Wagner (CW) Attacks: Carlini and Wagner [7]
introduced new gradient-based attack algorithms (CW attacks),
which can break defensive distillation [9]. Actually, CW attacks are
similar to a range of attacks [7] and they all share the same
optimisation framework. According to the distance metric, CW
attacks can be categorised as L0, L1 and L∞ attacks. Note that we
use the L2 norm in the evaluation, and we adopt a CW L2 attack in
this paper. Specifically, let t be the target class. Then search a
perturbation δ that solves

minimise ∥ δ ∥2
2 + c ⋅ f (x + δ)

such that x + δ ∈ [0, 1]n .
(4)

Here, f ( ⋅ ) is defined as below:

f (x′) = max ( max {Z(x′)i: i ≠ t} − Z(x′)t, − κ) (5)

where κ is a hyperparameter that controls the confidence of AE. A
larger κ will make the attacker generate the AE, which is classified
as t by the model with high confidence. Here, c is a
hyperparameter, which can make a trade-off between ∥ δ ∥2

2 and
f ( ⋅ ). Besides, c can be tuned with binary search in the CW attack.

We do not consider the other attacks such as projected gradient
descent attacks [21] and Jacobian-based saliency map attacks [4]
since they do not scale well on large images, although they have
been proven effective on small datasets such as MNIST and
CIFAR10.

2.2 Defence against adversarial attacks

Many defensive techniques against adversarial attacks have been
proposed recently. Although the previous literatures [28, 29] have
provided different taxonomies on defences, we divide defences into
two categories based on their results from this paper's perspective.
The first one is complete classification, where the defences try to
classify an AE correctly. The other is detecting AE, where it does
not modify the model while detecting the abnormal AE only.

2.2.1 Complete classification: In the beginning, people attempt
to classify AE correctly by modifying the original network
architecture:

Adversarial training: In adversarial training [5, 21], the AEs,
which are already known, are collected and added to the training
data of DNNs. Then, the DNNs are retrained with the new training
set to improve their robustness. However, such training may lead to
a huge cost and a little drop in classification accuracy. Besides,
adversarial training can only defend against the known attacks, and
it cannot block the second attack, namely the attacker can still
generate AE on the new model.
Input transformation: To avoid modifying the network architecture,
several studies, which transform the input before the DNNs have
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been proposed in recent years. Prakash et al. [11] introduced pixel
deflection, which can locally corrupt the image by redistributing
pixel values to make the AE become normal after this process.
However, too complex transformation models are used in
deflection and they only analyse the AE under black-box attacks.
Xie et al. [12] pointed that random resizing and random padding
can mitigate the adversarial effects, but it is costly to combine an
adversarial training model with random layers. Afterwards, bit-
depth reduction, Joint Photographic Experts Group (JPEG)
compression, total variance minimisation, and image quilting are
proposed to mitigate the adversarial effects of AE by researchers
[13, 30]. Unfortunately, most of these transformation-based
defences cannot take the AE with high confidence for evaluation
and they suffer from accuracy loss with CE. More importantly, one
transformation alone is insufficient to reverse the adversarial effect.
Gradient masking: Since most existing attacks rely on the gradient
information of the loss function, a few of works [9, 31] attempt to
conceal the gradient of a model. Ross and Doshi-Velez [31] trained
differentiable models by penalising the degree to which small
changes in the inputs can alter model predictions. In other words, a
small perturbation cannot change the outputs of a model easily.
Papernot et al. [9] proposed defensive distillation, where the
distilled model is trained with the smoothed labels produced by an
existing trained DNN model. Their experiments illustrated that
distillation can improve the robustness of a network against small
perturbation. However, these methods significantly increase the
training complexity and defensive distillation remains vulnerable to
CW attacks as shown in [7].

2.2.2 Detecting AEs: Although the complete classification can
improve the robustness of a model, the AE can still be generated on
the new classification model. Therefore, instead of modifying the
model, the approach of detecting AE before the model receives
more and more attention:

Secondary classification-based detection: Tian et al. [18] recorded
the predictions of AE and CE under rotation and then trained a
detector to classify AE based on the prediction details. The detector
shows a good performance on MNIST and CIFAR10, but it is not
suitable for large images such as ImageNet. Furthermore, the
detector cannot classify AE correctly, which are from different
attacks other than the considered attacks. We think the detector is
overfitting for small images and single rotation is not sufficient to
take account of the change of the predictions on large images.
Gong et al. [16] fed a DNN with both AE and CE and attempt to
classify with the learned DNN. While they can achieve a 100%
success rate on detecting the AE generated from MNIST, the
DNNs lead to a high FPR for CIFAR10. Also, their model yields a
poor performance on large images (in our experiments, the models’
FPR is 1 on images from ImageNet). The results reveal that it
might be impractical to train DNNs on AE and CE directly. Metzen
et al. [32] proposed to detect AE by looking at the inner
convolutional layers of the network. They trained an extra
detection neural network with outputs from the intermediate layers
of the original neural network. The detection network showed good
performance when the training and testing AE were generated from
the same process and the perturbation was large enough. However,
it cannot generalise well across different attack parameters and
attack generation processes.
Inconsistency between AE and CE: Several studies [14, 15, 20] try
to find the inconsistencies between AE and CE under certain
scenarios, such as a statistical test using maximum mean
discrepancy [20], higher weights on larger principal components
after PCA [15] and different distribution under kernel density
estimation or Bayesian uncertainty estimates [14]. However, they
are only proven effective on one or two small datasets [22]. Meng
and Chen [19] proposed MagNet, which combines a detector with a
reformer, to detect abnormal AE. The detector discards the input
far from CE, and the reformer moves AEs toward the manifold of
normal examples. MagNet needs a threshold trained on the original
images to detect AE, and it creates a large number of autoencoders
as candidate detectors and reformers. Nevertheless, for CW attacks,
this defence is unable to perform well even when the adversary is

not attempting to evade it. Moreover, MagNet cannot work well on
large images, which we will show in our experiments. Liang et al.
[33] introduced an adaptive noise reduction method to detect AE.
Specifically, scalar quantisation and spatial smoothing filters are
used to reduce the effect of AE. We find that few of larger images
and AE with low confidence are used in their paper to evaluate the
defence. In addition, the detection rate under the CW white-box
attack is very low (33%) even on the small dataset (MNIST). The
most similar one to our work is feature squeezing, which utilises
several squeezing skills, such as bit-depth reduction, median
smoothing, and non-local means, to find the inconsistencies of AE
and CE. Then through the inconsistency, they explore a threshold
that can better differentiate AE and CE. In this paper, we will show
a single threshold cannot handle different types of AEs from
different attacks, and it is insufficient to detect AE based on the
inconsistency of probability only.

3 Problem definition
3.1 Threat model

We assume that the attacker knows all the details of the classifier f,
which means f is white-box to the attacker. Let D be a detector of
defences. Depending on the knowledge of D the attacker knows,
we consider two kinds of attacks:

Zero-knowledge adversary: The attacker does not know the
existence of D and generates AE on f directly.
Adaptive adversary: The attacker knows the existence of D, owns
the outputs of D, and attempts to evade both f and D
simultaneously.

3.2 Detection evaluation metric

To evaluate the effectiveness of D, we decide to use the
performance indicators of a machine-learning model, namely TP,
FP, false negative (FN), and true negative (TN). D should ensure
the accuracy of CEs and find AE as many as possible. Therefore,
the FPR and TPR are used

FPR = FP/(FP + TN) (6)

TPR = TP/(TP + FN) (7)

A good detector should have a high TPR, but a low FPR, which
means it labels AE with high accuracy and incorrectly labels CE as
little as possible.

3.3 Evaluation process

Carlini and Wagner [22] proposed several recommendations for
researchers to study new defences. We follow all of them in this
paper:

Evaluate using a strong attack: In this paper, strong iterative
attacks (CW, DeepFool, and IGSM) and non-iterative attacks
(FGSM) are all used to evaluate our defence. Besides, we consider
targeted and untargeted attacks for CW attacks, which are more
powerful than other attacks.
Demonstrate white-box attacks fail: Evaluating defence with black-
box attacks only is not enough. We also evaluate the scenario,
where the attacker knows the defence and launch adaptive attacks
to evade detection. As shown in [22], we construct a new model,
which combines the classifier and the detector and then apply the
attacks to this new model.
Report FPR and TPR: A good detector should achieve a high TPR
first, which means it will find AE as many as possible. At the same
time, we should ensure the low FPR, which means the detector
misclassifies the CEs as few as possible.
Evaluate on a harder dataset: According to previous studies,
attacking large images is easier than small images, which means
defending against attacks on large images is harder than on small
images. Previous detectors can detect most AE on small images,
but not comprehensively being evaluated on large images. In this
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paper, we focus on the high-resolution images in the real world. We
look forward to a detector that can detect AE on high-resolution
images with low errors, and it can be applied in the real world.

4 Method design
4.1 Overview

Owing to the complexity of AE, it is hard to distinguish AE from
clean inputs directly. However, a phenomenon is observed that the
stability of AE is poorer than CE. In other words, AE is sensitive to
the preprocessing and the prediction of AE changed easily after the
little modification on it. We think that a preprocessing can be
considered as a linear or non-linear mapping of the input.
Furthermore, for AE and CE, we suppose there is a big difference
in behaviour under a set of linear or non-linear space mappings. In
this paper, we take the detection of AE as a binary classification
problem, as shown in Fig. 1. First, we adopt different mapping
methods to preprocess these inputs. Then, we take the classification
stability before and after image preprocessing as features in the
new feature space. Finally, we train a detector to distinguish AE
and CE based on these classification stability features.

More formally, we assume the original input
xi ∈ ℝm(i = 1, 2, …, n), the input space is X, and the new space is

ℋ. Let ϕ be a linear or non-linear transformation, and then there is
a map

ϕ(x):X → ℋ (8)

Let ϕS be a set of mapping methods, namely

ϕS = {ϕ1, ϕ2, …, ϕs} (9)

In the space ℋ, we obtain the new representation of an input

xi → ϕS(xi) = {ϕ1(xi), ϕ2(xi), …, ϕs(xi)} (10)

The predictions are mainly composed of labels and probabilities.
Thus, we should evaluate the changes of both labels and
probabilities. For labels, let E(x1, x2) measure the change, and then

E(x1, x2) = equal(C(x1), C(x2)) (11)

where C(x) is the classification of f on x and E(x1, x2) is 1 if C(x1)
equals to C(x2); otherwise, E(x1, x2) is 0. For probabilities, let
L(x1, x2) measure the change, and then

L(x1, x2) = L( f (x1), f (x2)) (12)

where f (x1) and f (x2) are n-dimensional vectors (n = 1000) of
outputs and L( ⋅ ) is an algorithm that measures the distance
between the two distributions. Finally, we can get the features of
input in the new space ℋ

F(xi) = (E(xi, ϕ1(xi)), L(xi, ϕ1(xi)), …,
E(xi, ϕs(xi)), L(xi, ϕs(xi)))

(13)

Actually, after we get the distributions in the new space, we can
observe the difference based on the trace distributions. Thus, the
detection of AE is transformed into the binary classifications of AE
and CE in the new space. Now, the key to detecting AE is to find
better space mapping methods. In the following section, we will
show how to choose better mapping methods.

4.2 Space mapping

Since there are lots of mapping methods for image processing, we
decide to consider the space mapping methods from the following
view: spatial location transformation, smoothing and hue,
saturation, and lightness (HSL) colour modification. Then, we try
to find representative mapping methods in these fields. Actually,
any mapping method that can make the behaviours of AE and CE
different can be considered. Our detector is not limited to the listed
mapping methods and is also suitable for other proper mapping
methods that have been tested experimentally.

4.2.1 Spatial location transformation: Intuitively, the target label
of AE will change easily as the image's pixels change. If we
perturb the spatial location of AE, the AE may not remain
adversarial. Thus, different spatial transformation techniques are
considered by us: 

Rotation: Rotating the input can change the location distribution
and make the decision of the model changed since neural networks
cannot behave the same as a human. However, rotation also
modifies on CE. How to rotate the input is an optimisation
problem, and an example of rotation is shown in Fig. 2.
Flip: Flipping is also a kind of spatial transformation. Flipping an
image horizontally [left to right (LR)] and flipping an image
vertically [top to bottom (TB)] are the two flip skills used in our
design.
Fisheye: Fisheye is originally used in the lens of a camera.
Through fisheye, it is easy for us to observe the micro and macro
features since fisheye can scale the local regions of images.
Specifically, let w, h be the width and height of an image,

Fig. 1  Whole framework of our design
 

Fig. 2  Rotation of different angles on an image
 

Fig. 3  Fisheye of different factors on an image
 

Fig. 4  Original image and their wave versions
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respectively. Here, px, py  represents a pixel location in the image.
In this paper, 0 ≤ px, py ≤ 224 . Then, let px centre, py centre  be the
central point of the image, rori be the original distance from the
centre, and rnew be the new distance from the centre. We have

rori = (px − px centre)2 + (py − py centre)2 (14)

rnew = rori
R

γ
× R (15)

px new = rnew × cos θ + px centre

py new = rnew × sin θ + py centre
(16)

where θ = arctan py − px centre / px − py centre , R = max (w, h)/2,
and γ is the perturbation factor. Then, we replace the pixel value at
px, py  with px new, py new . When γ is bigger than 1, the image is

concave; otherwise, it is convex. By the above coordinate
transformation, we get a new image such as a fisheye. The
examples are shown in Fig. 3.
Wave: Wave is a technique that can make the image look like a
wave. Similar to fisheye, wave computes the new location of
images. Instead of using (15), wave adopts the following
computing:

rnew = rori + A × sin(B × rori) (17)

where A, B are parameters of wave. The examples of wave are
shown in Fig. 4.

4.2.2 Smoothing: In this section, we introduce the smoothing
techniques used in our detector:

Mean blur: This is done by convolving the image with a
normalised box filter. It simply takes the average of all the pixels
under the kernel area and replaces the central element. Therefore,
the size of the kernel area can be adjusted to see the difference.
Bilateral blur: It is an advanced version of the Gaussian filter,
which introduces another weight that represents how two pixels
can be close (or similar) to one another in value. By considering
both weights in the image, the bilateral filter can keep edges sharp
while blurring the image.
Motion blur: Motion blur is the apparent streaking of moving
objects in a photograph or a sequence of frames, such as a film or
animation. Actually, it is a filter that can capture the motion state of
an object. Through motion blur, we want to make the image blur
with a different state.
Twirl blur: Twirl blur is a blur of the rotation state. Specifically, we
first compute the angle θ and rori as shown in fisheye. Then, we get
the angles set

θnew = {θ + i/100 i = 1, 2, …, num} (18)

where num are the parameters of twirl blur and can control the
degree of twirl. Next, we compute the new position coordinates
px new, py new

px new = rori × cos(θnew) + px centre

py new = rori × sin(θnew) + py centre
(19)

Actually, we get a set of new points, which are called the
neighbourhood of the original location. Finally, we replace the
pixel value at the original location px, py  with the mean value of
the set.

4.2.3 HSL colour modification: In this section, we also consider
the modification of HSL colour. Hue is an attribute of a visual
sensation according to which an area appears to be similar to one
of the perceived colours: red, yellow, green, and blue, or to a
combination of two of them. Saturation is the colourfulness of a
stimulus relative to its own brightness. Lightness is the brightness
relative to the brightness of a similarly illuminated white. Through

the transformation in different colour spaces, we observe the
difference between AE and CE.

4.2.4 Other transformation: Contrast is the difference in
luminance or colour that makes an object (or its representation in
an image or display) distinguishable. Gaussian noise is the
statistical noise with a probability density function equal to the
normal distribution. Then, the noise is added to the original image.
Finally, the image is clipped into the range of [−0.5, 0.5].

4.2.5 Analysis of mapping: To understand the impact of the
mapping methods, we visualise the differences before and after the
mapping in Fig. 5. We can clearly observe that different mapping
methods transform images from different angles, such as the
change of space location, the change of colour channels, and
different levels of smoothing. This meets our requirements, namely
we explore various ways in which images can be changed.

Besides, we want to know whether partial methods of the
methods work well and whether they are complementary. We first
choose the 10,000 AE from CW targeted and untargeted attacks (κ 
= 0, 10, 20, 30) as the test set. Then, we record the change of labels
before and after the mapping methods. The results are shown in
Table 1 and the numbers in this table represent the ratio of label
changes. Although one single mapping method cannot achieve a
high ratio among all AE, every mapping can make AE different to
a certain extent. More importantly, the influence of labels on CE is
far smaller than AE. Therefore, we can differentiate the AE from
CE well through these mapping methods, and we will verify our
design using more experiments in the next section.

4.2.6 Implementation: For the space mapping methods, we
implement them with the TensorFlow. All of the smoothing skills
can be implemented in the OpenCV library, except twirl blur. By
using TensorFlow, we get the features of 10,000 images in <200 s.
For the detector, we select the random forest as the classifier in the
new space. Although many machine-learning models can be used,
we find it is sufficient to achieve excellent performance with the
random forest algorithm.

5 Experiment and evaluation
The previous section shows that different space mapping methods,
as used to transform the images, have various effects that can

Fig. 5  Visualisation of differences. We first transform the images with
different mapping methods and then compute the differences. For better
visual effects, we add all the differences to 100. Fisheye 1 and Fisheye 2
represent different γ values
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modify the image to varying degrees. The mapping is expected to
satisfy two properties: under the mapping: (i) the prediction of AE
should change as much as possible (TP) and (ii) prediction of CE
should change as little as possible (FP). In the following, we first
examine the performance of different mapping methods based on
the change of label and probabilities, since they are two metrics to
measure the predictions. Then, we train a binary classifier in the
new space to distinguish AE from CE, which is viewed as a
detector. Finally, we evaluate the detector against represent attacks:

Dataset: We select 10,000 images from the ILSVRC2012
validation set and ensure that these images are predicted correctly
(Top-1) by the ResNet-50 model. Besides, this subset covers all the
1000 classes of ImageNet. All the images are resized to
224×224×3 and normalised to [−0.5, 0.5], which are for adapting to
the ResNet-50 model used later. The chosen 10,000 images consist
of our CE set.
Model: We adopt the pre-trained ResNet-50 model from Github. Its
initial accuracy on CE we selected is 100%.
Attacks: To measure the performance of the detector, we adopt both
untargeted and targeted attacks. For targeted attacks, the
representative CW targeted attacks [7], TGSM [27], MI-FGSM
[26], and elastic-net attacks to DNNs (EAD) [34] are used for
evaluation. For untargeted attacks, CW untargeted attacks [7],
FGSM [5], IGSM [27], and DeepFool [6] are used for the test. We
evaluate the classifier versus attacks and summarise the results in
Table 2. Especially, the target-next attack means the target label is
the second class in the original prediction and target-least likely
(LL) attack means the target label is the least likely class in the
original prediction. Confidence means the confidence level of the
successful AE. As shown in Table 2, CW attacks can achieve high
success rates both in target and untargeted attacks. For FGSM and

IGSM attacks, we choose the parameters, which can cause high
success rates. Obviously, targeted attacks are harder than
untargeted attacks.

5.1 Sensitivity of labels

We expect that the label of a prediction of AE will change after the
space transformation while not for CE since AE is expected to have
a bigger sensitivity than CE. For each mapping method, different
parameters are set to observe the prediction difference between AE
and CE. The detail parameters are listed in Table 3 and
unreasonable parameters are excluded in the experiment due to the
serious damage to the original images. During the experiment, the

Table 1 Ratio of label changes among the mapping methods
Mapping CE Untargeted Targeted
CW - κ = 0 κ = 10 κ = 20 κ = 30 LL Next
rotation 0.12 0.92 0.81 0.78 0.75 0.99 0.92
flip LR 0.04 0.95 0.81 0.75 0.69 0.99 0.95
flip TB 0.42 0.90 0.86 0.85 0.83 0.99 0.90
fisheye 0.06 0.93 0.70 0.58 0.51 1.00 0.91
wave 0.12 0.92 0.78 0.73 0.68 1.00 0.93
mean blur 0.18 0.90 0.87 0.86 0.86 1.00 0.90
motion blur 0.14 0.91 0.83 0.81 0.79 1.00 0.91
bilateral blur 0.16 0.90 0.84 0.83 0.82 1.00 0.90
twirl blur 0.10 0.92 0.75 0.68 0.65 1.00 0.91
hue 0.38 0.89 0.77 0.73 0.70 0.99 0.89
sature 0.24 0.85 0.64 0.55 0.49 0.99 0.85
lightness 0.02 0.72 0.02 0.01 0.01 0.98 0.72
Gauss Noise 0.12 0.91 0.82 0.79 0.75 0.99 0.92
contrast 0.25 0.88 0.79 0.76 0.73 0.99 0.88

 

Table 2 Evaluation on attacks
Attack Parameter Success, % Confidence L2

untargeted FGSM [5] ϵ = 0.06 91.9 0.51 13.72
IGSM [27] ϵ = 0.06 99.9 0.99 4.31

DeepFool [6] — 98 0.42 0.13
CW [7] κ = 0 100 0.45 0.21

κ = 10 100 0.97 0.31
κ = 20 100 0.99 0.43
κ = 30 100 0.99 0.57
κ = 40 100 0.99 0.69

targeted CW [7] LL 100 0.11 0.41
next 100 0.44 0.20

TGSM [27] LL 94.9 0.90 4.41
MI-FGSM [26] ϵ = 0.3 99.6 0.99 33.25

EAD [34] LL 99.9 0.32 18.93
 

Table 3 Parameters to test
Mapping Parameters
rotation θ: 2, 3, 5, 7, 15, 30, 45, …, 150, 165
flip LR, TB
fisheye γ: 0.5, 0.6, …, 1.4, 1.5
wave A = 1, 1.5, 2, 2.5; B = 1, 1.5, 2, 2.5
mean blur kernel: 3×3, 4×4, 5×5, 6×6
motion blur kernel:3×3, 4×4, 5×5, 6×6
bilateral blur kernel:5×5, 7×7, 9×9
twirl blur Num: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
hue factor: 0.1, 0.2, …, 0.9, 1.0
sature factor: 0.1, 0.3, …, 1.7, 1.9
lightness ε: 0.01, 0.02, …, 0.09, 0.1
Gauss noise σ: 0.02, 0.04, 0.06, 0.08, 0.1
contrast factor: 0.3, 0.4, …, 1.1, 1.2
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ratio of change on labels after transformation is recorded to
measure the sensitivity of labels, which is also called inconsistency
rate (ICR). Specifically

ICR = 1
N ∑

i = 1

N
E(C(xi), C(ϕ(xi))) (20)

where N is the number of test images, C(x) is the label of x, and ϕ
represents one space mapping method. E(x1, x2) is 1 if C(x1) equals
to C(x2); otherwise, E(x1, x2) is 0. It should be noted that the ICR is
computed on all testing data.

We show partial results in Fig. 6. On the basis of the behaviours
of different mapping methods, we have the following findings:

• The ICRs of CW target-next attacks are almost the same as
untarget-κ = 0’s. This is because CW untargeted attacks always
push the class which is not the true class and its probability is
the highest in original predictions to the adversarial class.
Hence, most second-placed classes in original predictions
appear on the adversarial classes of CW untargeted attacks. To
verify this conjecture, we list the rank of adversarial classes
within the top-5 predictions for the original image in Table 4.
For all the untargeted attacks, the majority of adversarial classes
appear in the top two of the original predictions.

• The ICRs of CE are lower than that of AE and are approximated
to 0 under most mapping methods, such as smoothing
techniques, wave, fisheye, lightness, and flip LR. Rotation with
large angles contributes to the high ICR of CE for introducing
more unrelated areas, while small angles not.

• The ICRs of CW target-LL attacks are near to 1, which means
the sensitivity of targeted AE is very big. We also tested targeted
AE with higher confidence κ = 10, 20, 30, 40  and found that
all of them behave very similarly, namely close to 1.

• Different from the targeted attacks, the ICR of untargeted AE
goes down as the confidence goes up. Even by smoothing
techniques, the ICRs of CE are below 0.8 under higher
confidence κ = 20, 40 .

• Generally, smoothing techniques are better than spatial location
transformation at distinguishing AE from CE, followed by HSL
colour modification. We think spatial location transformation
has a big effect on both AE and CE, which may make the labels
of AE and CE change at the same time. Smoothing has a soft
effect on the image and it is sufficient to make the label of AE
change, but CE not. Besides, HSL colour modification creates

Fig. 6  ICR of labels on different mapping methods. We record the rate at which labels are inconsistent after mapping
 

Table 4 Adversarial class in the original prediction
Parameters Rank 2, % Rank 3, % Rank 4, % Rank 5, %
untarget-κ = 0 93.4 3.6 1.3 0.58
untarget-κ = 10 77.4 9.8 3.6 2.2
untarget-κ = 20 79.1 6.6 3.1 2.1
untarget-κ = 30 80.7 5.0 2.4 1.7
untarget-κ = 40 81.1 4.2 2.1 1.6
 

Table 5 Specific selected parameters
rotation: 2, 3, 4, 5, 7 flip: LR, TB
fisheye: γ = 1.2, 0.8 wave: (A = 1, B = 1.5)
mean blur kernel: 4×4 motion blur kernel:4×4
bilateral blur kernel: 5×5 twirl blur num: 5
hue factor = 0.5 sature factor = 0.1
lightness ε = 0.1 Gauss noise σ = 0.04
contrast factor = 0.3
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little in the model's decision making when handling AE with
low confidence.

As shown in Fig. 6, the sensitivity of labels varies with the
parameters. To choose a good parameter, we use the ICR to
measure different parameters. Specifically, let ICRCE and ICRAE be
the ICRs of CE and AE, respectively. Then, the performance of
each parameter is Ppara

Ppara = 1
5 × ∑

κ = 0

40
ICRAEκ − ICRCE (21)

where κ is the confidence level used in CW attacks. Since the ICR
s of target LL are nearly 1 and ICRs of target next are similar to
untarget-κ = 0, we exclude the targeted attacks from Ppara. Thus,
we use the average result of AE under five κ values (κ = 0, 10, 20,
30, 40) as the final performance. The bigger the Ppara value is, the
better the ICR between CE and AE. As shown in Fig. 6, all the
parameters in Table 3 are chosen for tests. Then, we use (21) to
compute Pparas under different parameters. By selecting the one
with the higher Ppara value, we get 19 parameters of the mapping
methods as shown in Table 5. We consider multiple parameters in
rotation since we find that these angles have a different effect on
AE. For fisheye, we choose two perturbation factors, which
represent convex or concave fisheye. Next, we will use these
specific mapping methods to measure the sensitivity of labels.

5.2 Sensitivity of probability distributions

Many algorithms can be used to compare the changes of
probabilities, such as L1 norm, L2 norm, cosine distance, cross-
entropy, Kullback–Leibler divergence, and Jensen–Shannon
divergence. We have tried these methods and found that L1 norm is
the best. However, the performance difference between the
different methods is not very great. Thus, we decide to adopt the L1
norm as the metric in Section 4.1. Since L1 distances are continuous
values, we have to set different thresholds to select the parameters
of mapping methods. To reduce the dependency on the dataset and
the difficulty in defining thresholds, we use the mapping methods
in Table 5 to observe the difference of the probability distributions.
Although the selection of parameters does not consider the change
of probability, we find that it is sufficient to differentiate the
sensitivity of probability distributions.

To our surprise, the performance of the mapping methods is
similar for each attack. However, the distinction is different for
different types of attacks. For simplicity, we take fisheye γ = 0.9
as an example and we plot the histogram of the L1 distance among
the probabilities. Since the probability ranges from 0 to 1, the L1
norm between probabilities of before and after mapping ranges
from 0 to 2. As shown in Fig. 7, the top subgraph of each image is
the performance of AE and the bottom is CE. On the basis of the
results of fisheye and other mapping methods, we have the
following conclusions:

• The distribution of L1 distance is different for different attacks.
Therefore, a single L1 distance as done in [17] cannot

Fig. 7  L1 feature analyses under the mapping method – Fisheye. The top subgraph is the performance of AE and the bottom is CE. The range of L1 is from 0
to 2. The horizontal axis represents L1 distance and the vertical axis represents the number of images
(a) Untarget-κ = 0, (b) Untarget-κ = 10, (c) Target LL, (d) Target next
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differentiate all AE well, which might be generated from various
adversarial attacks.

• The results of the targeted-next attack are similar to untarget-
κ = 0. Besides, the L1 distribution of FGSM and DeepFool
attacks are similar to targeted attacks, not untargeted attacks
with high confidence.

• The AE with high confidence shows a big difference from CE.
Obviously, for AE with high confidence κ = 10, 20, 30 , most
L1 distances are near to 2, while CE not, which means the
sensitivity of probability distribution for AE is very big under
our mapping methods. Especially, for a target-LL attack, the
intersection between CE and AE is the least among all attacks.

5.3 Detector

The sensitivities of AE and CE through different mapping methods
can be viewed as a feature in the new space. For labels, the feature
is 1 or 0, which means whether the labels are equal after mapping.
For probabilities, the feature is the L1 distance after each mapping.
Since we want to know whether these features could distinguish
AE from CE, we analyse several represented features in different
dimensional spaces. Specifically, we choose fisheye, wave, twirl,
and motion blur as the features and choose the AE from CW
untargeted attacks to test.

First, we consider the one-dimensional (1D) space, namely only
one feature will be tested. In Fig. 8, there is obviously a difference

between AE and CE. However, we cannot distinguish all AE from
CE under a single feature.

Then, we attempt to observe the distribution in the 2D space.
Here, we display the change of probability since the label has two
states only. As shown in Fig. 9, we divided the two features into a
group to distribute AE and CE. In the 2D space, we find that the
difference between the distribution of AE and CE is greater than
that in 1D space.

Furthermore, we want to know whether the increase in
dimensions can increase the degree of discrimination. Therefore,
we display the partial distribution in the 3D space, as shown in
Fig. 10. We treat each feature as a dimension, where both features
of probability and label are considered. On the basis of the results,
AE and CE are better differentiated in 3D space than lower
dimensions.

Therefore, we assume that AE will reveal a different
distribution from the CE in a high-dimensional space. Obliviously,
this is a classification problem in the high-dimensional space, and
we decide to use a machine-learning algorithm to construct the
classifier, which is called the detector in our paper. Specifically, the
10,000 CE and corresponding AE are used to train and test our
classifiers. We split 70% of the datasets into the training set and the
rest into the test set. The 14,000 AE from CW untarget-κ = 0 and
CW untarget-κ = 10 and 7000 CE make up the training set. The
remaining are used to test the performance of our detector. For the
machine-learning model, we select the typical model, random

Fig. 8  Distribution of AE and CE in the 1D space. The left represents the sensitivity of labels and the right shows the sensitivity of the probability distribution
(a) Change of label, (b) Change of probability

 

Fig. 9  Distribution of AE and CE in the 2D space. The diagonal subgraphs represent the features themselves, while the non-diagonal subgraphs represent the
2D features
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forest, to conduct our classification task. Through our experiments,
it is verified that the random forest can carry out the task well.

To verify the importance of using all the image transformations
for detection, we decide to use the features from several mapping
methods, such as fisheye, wave, twirl, and motion blur. These
mapping methods can distinguish AE from CE well, as shown in
Fig. 6. Here, we choose all AE from CW attacks (targeted and
untargeted) as the test set. The results of detections are shown in
Table 6. From Table 6, the same model trained on features from
partial mapping methods will lead to a high FPR. If we add more
valid mapping methods, the model will achieve higher TPR with
lower FPR. Therefore, we use all features from 19 mapping
methods to build our detector.

The reason we combine both the label and probability is that
these two make up the prediction. On the one hand, considering the
changes of a label only will lead to high false positives since CE is
also sensitive to the mapping methods to some extent. On the other
hand, considering the changes in probability only is incomplete.
For example, the adversarial attack may change the rank of classes
in the prediction, but not change the series of probability values too
much, which will not lead to a sufficiently big L1 distance. In our
following experiments, we indeed find the FPR is high (4%) when
considering the changes of a label only. Besides, if the detector
considers the changes in probability only, the TPR is poor when

handling AE with larger perturbation, such as the AE generated by
FGSM and IGSM. In the next section, we will show the overall
performance of our detector on multiple test sets.

5.4 Evaluation of multiple attacks

5.4.1 Zero-knowledge adversary: To compare with other
defences [17], we carry out their algorithms on the ImageNet
dataset. For MagNet [19], which contains a detector and a
reformer, we record images discarded by the detector and the
images whose labels changed after the reformer. For feature
squeezing, we first select the threshold according to the FPR of CE
(<5%) and then adopt the best joint detection algorithm, which
represents the best result of feature squeezing. The overall results
of a zero-knowledge adversary are shown in Table 7, where we list
the TPR in each attack column and the FPR in the last column. 
Besides, the average ROC–AUC score is 98.98%, which is also
higher than [17] (94.24%).

On the basis of the results, we find that MagNet does not apply
to the large high-resolution images, and the reformer will lead to a
high FPR. We think the reason is that limited images cannot
construct a high-precision reformer for large images and training
the reformer with a huge amount of images is impractical.
Unfortunately, feature squeezing also shows bad performance on

Fig. 10  Distribution of AE and CE in the 3D space. We can clearly find the location of AE are significantly different from CE. The Fisheye and motional blur
in (a) and (d) represent mapping methods with different parameters, respectively
(a) The distribution of AE and CE in the 3D (Fisheye, Fisheye, Twirl) space, (b) The distribution of AE and CE in the 3D (Fisheye, Wave, Twirl) space, (c) The distribution of AE
and CE in the 3D (Wave, Twirl, MotionalBlur) space, (d) The distribution of AE and CE in the 3D (MotionalBlur, MotionalBlur, Twirl) space

 
Table 6 Comparative experiments of different spatial mapping methods
Features Fisheye + wave Fisheye + wave + twirl Fisheye + wave + twirl + motion blur All
TPR 90.4% 93.1% 95.0% 99.1%
FPR 15.2% 13.0% 12.3% 0.3%
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most AE. Except for the CW targeted attacks, which are easy to
detect, the TPRs for other attacks are all lower than our detector.
Although our detector is trained on the CW untargeted attacks
κ = 0, 10  only, it can also detect other types of attacks with high

TPR, such as CW targeted attacks, CW untargeted attacks
κ = 20, 30, 40 , DeepFool, FGSM, and IGSM, which

demonstrates its good robustness across attacks. Besides, the FPR
is very low (<1%).

Cross models: We want to know whether the AE generated on
other models can be detected by our detector. Thus, we select
ResNet152 and VGG16 as the test models. The ResNet152 is the
model family of ResNet50 and VGG16 is different from ResNet50
on architecture. After generating AE on these models, we evaluate
the detector with the new AE and the results are shown in Table 8. 
For AE generated on VGG16, the TPR goes down a little bit;
however, the TPR remains higher. The ROC–AUC scores are 94.37
and 95.71%, respectively. The results mean that the performance of
our detector has not dropped significantly due to model changes.
Furthermore, the attacker may use transferability [35] to attack the
target model, namely they may use the AE generated by other
models to fool the target model. However, this actually degenerates
into a problem of detecting the AE of target models. We can use
the detector deployed in the target model to recognise the AE as
shown in Table 7.

5.4.2 Adaptive adversary: As an adaptive attacker, the adversary
has complete knowledge of both the classifier and existence of our
detector. Even the attackers know the mapping methods we used;
they must generate AE and evade the image transformation
simultaneously, which will lead to a decrease in AE's quality.
Besides, it is hard for attackers to get useful image transformation
methods since we can change the mapping methods and
parameters. Thus, we simulate the adaptive adversary with the
method proposed in [22]. In [22], our defence belongs to secondary
classification-based detection. Specifically, we construct a new
model G

G(x)i =
ZF(x)i i ≤ N
ZD(x) ∗ 2 ∗ max (ZF(x)) i = N + 1 (22)

where ZD and ZF represent the output of the detector and logits of
the classifier, respectively. Note that ZD is the probability value of
the AE. Thus, G acts as a classifier on N + 1 classes, which
combines the detector and classifier. If the detector views the input

x as an AE, ZD(x) will be larger than 0.5 and G(x) will output the
N + 1 class. Otherwise, G(x) will output the class as ZF does. We
then apply the adversarial attacks on the new model G. For targeted
attack, if the input x is classified by G as the target class l (l ≤ N),
then C(x) = l and the detector D classifies x as a CE. We use the
ASR to measure the effectiveness of adaptive attacks. Again, we
compare the performance of the white-box attack with feature
squeezing. The results are shown in Table 9. As shown in Table 9,
feature squeezing is hard to defend against the CW attacks under
the white-box setting. In contrast, our detector can resist all the AE
from CW targeted-LL attack. Even for the CW target-random
attack, the ASR is only 1.43%. When facing the easiest CW target-
next attack, our detector significantly reduces the ASR from 100 to
41%. Actually, the CW target-random attack is the most
representative attack since the target label cannot always be the
next class. It is extremely difficult for an attacker to fool the model
to output a specific label, but not the next class. When we attempt
to generate AE with high confidence κ = 10, 20 , we surprisingly
find that the ASR is dropped to 28%. Besides, the L2 distance
between AE and CE has a substantial increase compared with the
AE without defence.

Randomisation: To counter the CW target-next attack in white-
box scenarios, randomisation is considered by us [22]. After
extracting the 38D features of the inputs, we randomly selected
five features from the first iteration. Then, we replace five of 38
features with them in each iteration. Through this replacement
process, we could increase the difficulty of the attack because there
are always initial features exposed. The attacker cannot get the
information of the five specific features and launch adaptive
attacks to evade it. Given an adaptive adversary, we repeat the CW
target-next attack on the detector with randomisation and find that
the ASR drops to 3%. At the same time, we must remain the
accuracy of the detector if randomisation is deployed. Thus, we
retested the TPR with the modified detector given the adaptive
adversary. As shown in Fig. 11, the performance of the randomised
detector remains almost the same as that of the previous detector. 
Therefore, we believe our detector with randomisation can
effectively hinder the adaptive adversary.

6 Discussion and limitation
Discussion: The biggest advantage of the proposed detector is its
robustness. Different from previous works [16–18, 33], our
detector works well across attack algorithms and models. Besides,
our detector exhibits a lower FPR and higher TPR under white-box
attacks than before. Although dozens of mapping methods are used
in our detection, the overhead is very small (<0.1 s per image).
Since the mapping methods used in our detector are sufficient to
detect most AE, we did not consider other mapping methods, such
as JPEG compression, resizing, shift, and padding. However, our
defence is open, and other new mapping methods can be directly
integrated into the detector easily. It should be noted that our
detector is significantly different from ensemble methods [17, 25].
We want to explore the trajectory of AE under various mapping

Table 7 Detection results of zero-knowledge adversary
Untargeted attacks Targeted attacks
Detections CW κ = 0,

%
CW κ = 10,

%
CW κ = 20,

%
DeepFool, % FGSM, % IGSM, % CW next,

%
CW LL,

%
MI-FGSM,

%
EAD, % TGSM, % FPR, %

MagNet [19] 71 65.5 58.2 84.9 56.3 35.3 84.9 83.4 77.6 70.3 45.4 17
feature
squeezing [17]

54.6 82.5 75.8 49.8 42.3 63.1 55.1 99.9 67.7 99.7 38.8 4.9

our detector 99.9 99.6 98.0 99.0 81.0 82.8 99.9 100 84.7 99.9 95.5 0.3
The bold value represents the maximum value of each column, which means that our detector achieves highest detection rate on different adversarial attacks.
 

Table 8 Detection results of cross models
Model CW untarget, % CW target, % DeepFool, % FGSM, % FPR, % ROC–AUC, %
ResNet152 98.5 98.7 99.1 71.3 5.8 94.37
VGG16 96 96.3 97.1 61.6 3.6 95.71

 

Table 9 Success rate of an adaptive adversary
Detection CW target

next
CW target

LL
CW target
random

DeepFool

feature squeezing
[17]

100% 100% 100% 57%

our detector 41% 0 1.43% 4.6%
L2 (our detector) 1.44 0 2.76 0.15
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methods, not the decision based on multiple detectors. Besides, the
attack algorithms in [22, 23], which can break ensemble detections
easily, are implemented in this paper to evaluate our detector, and
our detector demonstrates promising performance against them.
Limitation: Our detector depends on the difference between AE
and CE, so we need to generate AE first. If getting AE is hard for
some scenarios, the training will get blocked. Fortunately, only
small batches of AE are used in training as shown in Section 5.3.
The number of AE is far below the AE using in adversarial
training. In addition, the TPR of white-box attacks is not very high
yet without randomisation, and this leaves room for attackers who
own details of the detector to launch an attack. As shown in
Table 9, the AE of CW targeted-next attack is not well-detected.
However, target labels of attackers are not always easy (the next
class of the original label) and they might be far from the original
label. Moreover, a randomised detector can block most white-box
attacks while allowing a little bit of TPR loss.

7 Conclusions
Many works focus on the defences or detection of AE in DNNs.
However, most of such existing methods are not attack independent
and model independent. Besides, their detections only work on
small images. In this paper, we propose an effective defence based
on space mapping. The change of label and probability are both
considered under different mapping methods. Through space
mapping, we can trace the AE in the new space. Finally, we train a
detector to learn the trace difference in the new space between AE
and CE with machine-learning models. Our detector provides four
important features: (i) can work well across different parameters of
the same attack; (ii) can work well across different types of attacks;
(iii) can work well across different models, and (iv) can be
deployed directly without modifying the original models.

We evaluate our detector under both zero-knowledge adversary
and adaptive adversary. The experiments demonstrate that our
detector can achieve a high TPR in detecting the AE generated by
different attack algorithms given zero-knowledge adversaries, and
can effectively raise the bar for adaptive adversaries. Compared to
the state-of-the-art defences, our detector performs better on both
TPR and FPR. Our research demonstrates that AE and CE can be
effectively differentiated with common space mapping methods.
Furthermore, we will explore more differences between AE and CE
to develop an effective defence that relies on train data as little as
possible and achieves better performance under the adaptive
adversary scenario.
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